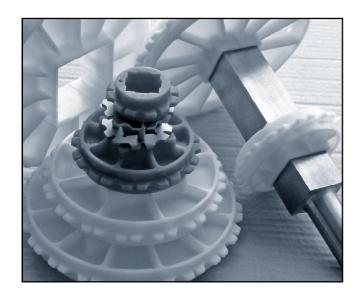
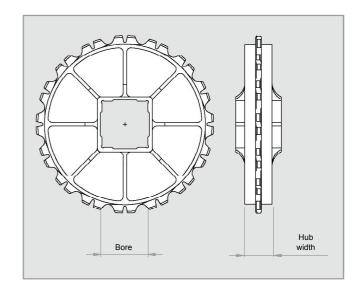


SERIES E30 FLAT FRICTION

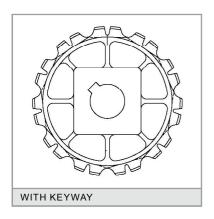
Pitch	30 mm	
Surface	Flat Friction	
Drive system	Hinge	
Belt width	Multiples of 10 mm	
Rod diameter	Ø 4.6 mm	
Retention system	Сар	
Rubber hardness grades	Shore A35 / A45 / A60	
Indent	Multiples of 10 mm, minimum 30 mm	
Spacing of rubber lines	Multiples of 30 mm	

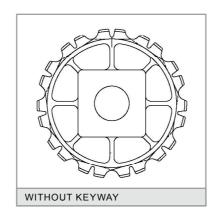
Surface of the belt	Belt standard material	Rubber hardness grades and colour	Rod standard material	Temperature range (°C)	Available colours in stock
	PP - Polypropylene	Shore A35 - grey	PP - Polypropylene	+1 to +104	[W]
Flat Top		Shore A45 - black (1)			[G]
Flush Grid		Shore A60 - beige			[W]
	PE - Polyethylene	Shore A60 - beige	PE - Polyethylene	-50 to +65	[N]

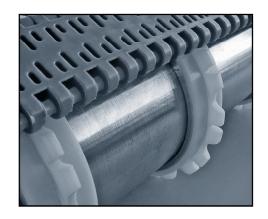

Flat Friction Top, with a flat rubber surface, is perfect for applications in which a maximum adherence is needed.


Colours: [W] White - [G] Grey - [B] Blue - [N] Natural - [O] Black. // The materials and colours that are normally in stock are those above indicated. In special cases in which it is needed a belt in a material or colour different from those above mentioned, you should ask directly to EUROBELT.

⁽¹⁾ Unsuitable for direct contact with food.


ACCESSORIES [SPROCKETS]





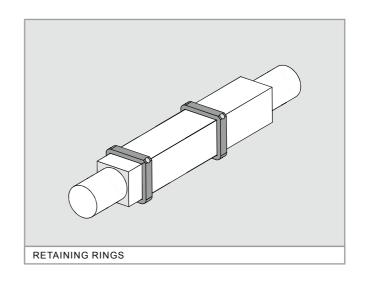
N° of teeth Pitch		Bore for square shaft		Hub	Matadala	
Т	T diameter mm	mm	inch	width	Materials	
6	60	25	-	24		
9	87.7	25 40	1" 1.5"	24	Polypropylene	
11	106.5	40	1.5"	40		
16	153.5	40 60	1.5" 2.5"	40	Polyacetal Stainless steel	
20	191.5	40 60 90	1.5"	40	Stailless steel	

SPROCKETS FOR SQUARE SHAFT

We have plastic sprockets for round shaft with and without keyway. We also have sprockets to be used with motor drum in applications needing a special cleaning or in conveyors in which it is not possible to place the motor in the outside due to problems of space or safety.

ACCESSORIES [RETAINING RINGS]

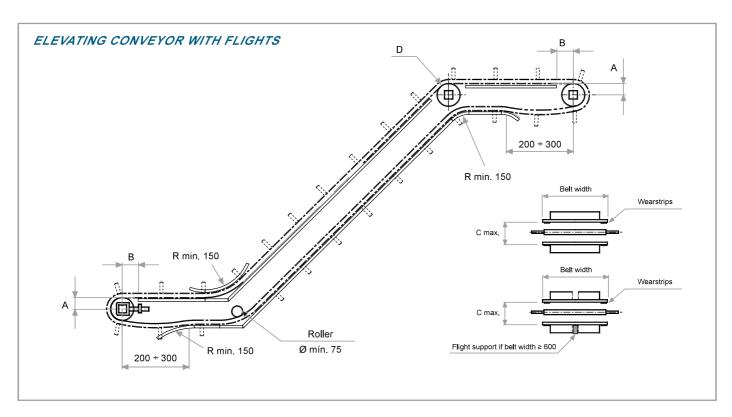
INSTALLATION

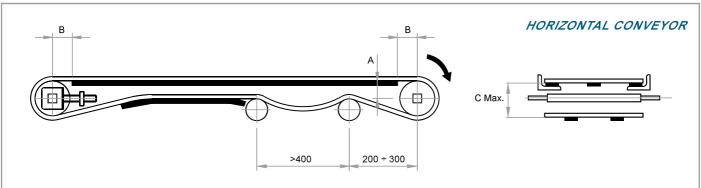

These rings are placed at every side of the central sprocket to fasten it to the shaft in order to avoid any lateral movements of the belt.

They are manufactured in AISI 316 stainless steel and they are fixed by means of a set screw stuffed in the ring itself.

One sprocket, duly fixed with 2 retaining rings, should be put in the centre. Then you should place the same quantity of sprockets at every side of the central one but without any fixing, as they will absorb the possible belt expansions and contractions.

The same procedure should be carried out in both shafts.


Bore for square shaft	Screws
20	M 5 x 5
40	M 6 x 6
60	M 6 x 6
90	M 6 x 6



CONSTRUCTION DATA [CONVEYOR]

- [A] Distance between the sliding surface of the belt and the centre of the shaft.
- **[B]** Distance between the vertical of the shaft and the beginning of the sliding surface.
- **[C]** Distance between the sliding surface of the belt and the support of the return way.
- [D] If sprockets are used in the inflexion shaft, do not retain the central one.
- [R] This radius must be as big as allowed by the application in order to minimize the wear (min. 150 mm). For belts with side guards, consult about this radius.

In the construction of conveyors, the distances appearing in the chart below must be respected according to the belt Series and the size of the sprockets.

N° of teeth T	Ø Pitch	Α	B max.	C max.
6	60	25	30	65
9	87.7	37	40	92
11	106.5	48	50	110
16	153.5	73	65	155
20	191.5	91	75	195

TABLE OF SPROCKETS AND WEARSTRIPS

Belt nominal width (mm)		Minimum quantity	Minimum quantity of wearstrips		
		of sprockets per shaft	Transport way	Return way	
40	100	1	2	2	
110	300	3	2	2	
310	500	5	4	3	
510	700	7	6	4	
710	900	9	8	5	
910	1,100	11	10	6	
1,110	1,300	13	12	7	
1,310	1,500	15	14	8	
1,510	1,700	17	16	9	
1,710	1,900	19	18	11	
1,910	2,100	21	20	12	
2,110	2,300	23	22	13	
2,310	2,500	25	24	14	
2,510	2,700	27	26	15	
2,710	2,900	29	28	16	
2,910	3,100	31	30	17	
3,110	3,300	33	32	18	
3,310	3,500	35	34	19	
3,510	3,700	37	36	21	

To calculate the necessary minimum quantity of sprockets for the drive shaft as well as for the idle one, the next formula has been used:

This amount must always be odd.

To calculate the quantity of supports, the weight of the product to be transported must be taken into account.

The distance between supports should not exceed 150 mm in the transport way or 300 mm in the return way.

